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Abstract-A numerical and experimental study of free convection two-dimensional (2D) flows in a satu- 
rated porous horizontal annulus is reported. The fluid motion, described by 2D Darcy-Boussinesq equa- 
tions, is obtained from two different numerical methods, namely Fourier-Galerkin and collocation- 
Chebyshev methods, for high approximations. A comparison of the spectral accuracy of these two methods 
is carried out. Numerical results indicate that the collocation_Chebyshev method gives a better accuracy 
especially for the description of the boundary layers developed near the inner and outer cylinders. An 
experimental study using the Christiansen effect for the visualization of the thermal fields shows the 
existence of bicellular 2D structures. These structures, which have never been previously observed for 
concentric cylinders and by means of the Christiansen effect, are in good agreement with numerical results. 

1. INTRODUCTION 

THE STUDY of natural convection, in a porous layer 
bounded by two horizontal isothermal concentric 
cylinders, has a wide variety of technological appli- 
cations ranging from thermal insulators such as gas- 
lines in gas-cooled reactors, cryogenics, underground 
cable systems, storage of thermal energy, etc. 

The problem of accurately determining the fluid 
flow and heat transfer fields has proved to be quite 

challenging and has stimulated a large number of 
investigations over the past 20 years. 

The main results concern the numerical study of the 
two-dimensional (2D) steady state which appears in 
the porous layer for low Rayleigh numbers. Several 

approaches have been developed such as the finite 
difference method and the perturbation method (Cal- 
tagirone [l] with AD1 method, Burns and Tien [2] 
with SOR method), the finite element method 
(Mojtabi et al. [3]) and the Galerkin spectral method 
(Charrier-Mojtabi and Caltagirone [4], Rao et al. 

[5], Himasekhar and Bau [6]). These authors [4-61 
expanded the temperature and the stream function 
with truncated Fourier series with orders of approxi- 
mation less than 20 x 20 (in the r- and $-directions, 
respectively). 

Taking into account the radiative effect, Echigo et 

al. [7] studied the 2D steady state using a finite differ- 
ence method. Bau [8] with a perturbation method, 

analysed the effect of eccentricity on the overall heat 
transfer rate. Himasekhar and Bau [9] used a boun- 
dary-layer technique and determined a correlation law 

between the Nusselt number, the Rayleigh number, 
the radii ratio and the eccentricity for an eccentric 
annulus and large Rayleigh numbers. 

Caltagirone [l] proposed a three-dimensional (3D) 
numerical analysis using a finite element method but 
no significant results have been obtained to explain 
the experimentally observed flow pattern. Fukuda et 
al. [lo] obtained 3D results using a finite difference 
method (SOR) for inclined annuli, but these results 
could not be extended to the horizontal case due to the 
presence of the gravitational force axial component 
direction which does not exist in a horizontal annulus. 
Charrier-Mojtabi et al. [l l] used a 3D Galerkin 
scheme expanding the temperature and the velocity 
fields into truncated Fourier series, but only low 
orders of approximation have been considered. More 
recently, Rao et al. [12] have developed the tem- 
perature and the potential vector fields into Fourier 
series with orders of approximation up to 10 x 13 x 5 
(in the r-, 4-, and z-directions, respectively). For all 
these 3D studies, the authors assume that the flow is 
symmetrical with respect to a vertical plane including 
the cylinder’s axis. According to the experiments, this 
assumption is valid for the 2D state. However, for the 
3D study, this assumption may reduce the generality 
of the problem. 
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NOMENCLATURE 

gravitational acceleration Y transformed coordinate, cb. 
permeability of the porous medium 
axial length of the cell Greek symbols 
average Nusselt number 

; 
l/in(R) 

inner and outer cylinder radii thermal expansion coefficient of the fluid 
radial distance c porosity of the porous medium 
coordinate in radius direction scaled by d* equivalent thermal conductivity of the 

r, saturated porous medium 
ratio of the outer to the inner radius 1’ kinematic viscosity of the fluid 
Rayleigh number, (PC),- heat capacity of the fluid 

gBK(T,- T,)rW)d(~*v) 
temperature 5 

angular coordinate 
stream function. 

dimensionless temperature, 

(T’- TJI(T,- T0) Subscripts 
inner and outer cylinder temperatures i inner 
dimensionless time 0 outer 
transformed coordinate, In r real variables. 

Stability studies have been carried out in refs. [ 1, 61. 
Caltagirone [l] has studied the transition between the 
steady unicellular 2D state and the 3D state, Hima- 
sckhar and Bau [6] have proposed a linear stability 
analysis of the multicellular 2D flows with 2D 
perturbations localized in the basic flow plane. 

Experimental studies about this subject were first 

developed by Cloupeau and Klarsfeld [13] using the 
Christiansen effect to visualize the thermal fields cor- 
responding to the unicellular 2D flows. Caltagirone 
[l] has determined, by means of temperature measure- 
ments, the critical Rayleigh number for the transition 
between the unicellular 2D flow and the 3D flow 
pattern. Bau et al. [14] have observed 2D multicellular 
structure in a Hele-Shaw cell for an eccentric annulus, 
but this multicell structure turned out to be unstable 

and became unicellular after a period of time. 
In the present study, the accuracy of the Fourier- 

Galerkin spectral method is analysed, especially for 
the representation of the multicellular 2D flows which 
appear for high Rayleigh numbers. Orders of approxi- 
mation up to 50 x 50 are considered. However, the 
spectral convergence of this method is not satis- 
factory ; so a new representation of the solution using 
a collocation-Chebyshev approximation, in the radial 

(confined) direction, is developed and a comparison 
between these two numerical methods is carried out. 
In order to prove the physical existence of multi- 
cellular 2D flows, obtained numerically, several exper- 
iments have been made, using the Christiansen effect 
to visualize the thermal fields. The experimental con- 
ditions inducing the apparition of the bicellular flow 
are investigated with particular attention. 

2. THE NUMERICAL APPROACH 

2.1. The 2D problem formulation 

Let us consider a porous annular region bounded 
by two horizontal coaxial cylinders. The inner and 

outer cylinders, of radii r, and r,, respectively, are 
maintained at constant and uniform temperatures, T, 
and T,, respectively, with T, < T,. The porous 
medium, with porosity E and permeability K, is satu- 
rated by an incompressible Newtonian fluid of kine- 

matic viscosity v, thermal expansion coefficient fl and 
density p. The saturated porous medium is equivalent 
to an artificial fluid of heat capacity (PC)* = 

Ed+ (1 -c)(pc), and of thermal conductivity 
i*. The radii ratio R = To/r, characterizes the system’s 
geometry for the 2D state. In order to simplify the 
formulation, several classical assumptions have 
been made. 

(i) The Boussinesq approximation and Darcy’s 
law are assumed to be valid. 

(ii) The inertia terms and viscous dissipations are 

neglected. 
(iii) The fluid is assumed to be in thermal equi- 

librium with the porous matrix. 

A conformal transformation is used to shift from 
polar (r, 4) to Cartesian coordinates (X = In r, Y = 4). 

The initial domain [ 1, R] x [O, n] thus becomes a 
rectangular domain [0, In R] x [0, n] (see Fig. 1). 

In dimensionless form, the governing equations, 
formulated in terms of stream function r// and tem- 
perature T, then read, for the steady 2D state 

i 

^ 

V’$ = Ra*exp(X) sin Yg+cos Y$ 1 (1) 
I V?&Z!!_aT~~ 

away ayax’ 

The Rayleigh number of filtration appears in these 
equations 

NW - TJrdwh Ra* = _--/~~. _~_.. 
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FIG. 1. Definition’s scheme. 

According to experimental results, we assume that 
the flow is symmetrical with respect to the vertical 
plane containing the cylinder’s axis. The boundary 
conditions can then be summarized as follows : 

(x=0: T=l ~=OVY (3) 

X=lnR=!: T=O $=OVY (4) 
u 

Y=O,n: $0 $=OVX. (5) 

2.2. Full Fourier-Galerkin approximation 
(a) Formulation. The stream function $ and the 

temperature T are expanded into Fourier series in 
both, radial and azimuthal, directions 

1 

$ = f 5 a,, sin (maolx) sin (ny) 
m=,n=l 

(6) 

T = 1 --ax+ : f b,, sin (mxaX) cos (n Y) (7) 
m=ln=ll 

where the coefficients a,,,, and b,,,,, are functions of the 
Rayleigh number and the radii ratio R. To deal with 
the nonlinear advection term in equation (2) a fic- 
titious time z is introduced and a transient form of 
energy equation (2’) is used 

ar 
aZ4727-_ (2’) 

The Fourier series (equations (6) and (7)) are 
inserted into equations (1) and (2’) which in turn are 
projected on each Fourier basis function, sin (pa&‘) 
x sin (qY) and sin @rcrX) cos (qY) for the momentum 
and energy equations, respectively. 

The coefficients b,, and a,, are solutions of a system 

of coupled, nonlinear, first-order in time differential 
equations. 

(b) 20 multicellular pow analysis. All the previous 
studies of this problem performed by the Fourier- 
Galerkin method used orders of approximation less 
thanMxN=20x20. 

In order to test the accuracy of the FourierGaler- 
kin spectral method, we focus our attention on the 
choice of M and N. Of course, it is not necessary to 
use high orders M, N for the representation of the 
unicellular flows, but when the bicellular, tricellular 
or multicellular flows are considered, higher orders of 
approximation are required, to capture the various 
expected boundary layers, appearing not only on both 
ends of the confined radial direction, but also in the 
azimuthal direction at the cell interfaces. Thus, orders 
of approximation up to 50 x 50 have been chosen to 
describe the flows corresponding to Rayleigh numbers 
ranging from 50 to 1000 and radii ratios of 2”*, 2’/4, 
2rj2 and 2. 

Using the fast Fourier transform (FFT) to calculate 
the nonlinear term (V grad T) leads to a significant 
gain of CPU time. The time integration is performed 
following an exponential fitting scheme [ 151 which has 
been proved to be better than the classical Adams- 
Bashforth scheme used in our previous work [4]. 

Applied to the spectral formulation of the energy 
equation 

db,_ 
dz - -UP, q)b,, + W, q) 

(L and N are respectively linear and nonlinear oper- 
ators of the system), this exponential scheme reads 

b;:’ = b;,-{l-exp[-L(p,q)dz]} 
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where N”(p, y) contains all the known quantities at 
time level n dz. 

The convergence test is based on the global Nusselt 
number Nu: 

(3) 

The convergence of the spectral coefficients is also 

considered. 

For each pair (Ra*, R) investigated the unicellular 
flow is obtained. For a given (Ra*, R) bicellular, 
tricellular or multicellular flows are obtained by intro- 
ducing various initial conditions if Ra* is higher than 

a critical value which depends on R. Figures 2(a)--(c) 
show the different flow patterns for Ra* = 200 and 

R = 2 and Fig. 3 shows the multicellular flow obtained 
for Ra* = 1000 and R = 2”4. In Tables 1-3, the 
results of the computations for R = 2, 2”’ and 2”” 
are summarized. 

Let us consider the case Ra* = 200, R = 2 and (b) 
initial conditions which must induce a tricellular 2D 
flow. For the approximation A4 x N = 12 x 12 WC 

indeed obtain a tricellular 2D flow with a global Nus- 
selt number NUT= 3.17, a good convergence of the 
solution is observed. With the same initial conditions 
and M x N = 14 x 14, we obtain a unicellular flow 

with a global Nusselt number of 2.69. Mx N = 
16 x 16, oscillations occur in the computations and no 
steady state could be obtained. 

With A4 x N = 20 x 20 the unicellular 2D flow is 
observed again and for Mx N = 30 x 30 ; 40 x 40 ; 
50 x 50 the flow is tricellular and the overall heat 
transfer is characterized by a global Nusselt number 
close to 3. 

A similar behavior is found again for R = 4’2 and 
2’1~. For Ra* and R fixed and for identical initial 

conditions, a unicellular or bicellular or tricellular or 
multicellular flow can be obtained, depending only on 

orders of approximations. (c) 

The first conclusion to be drawn from these results 
is that orders of approximation higher than 50 x 50 
must be chosen to represent the bicellular, tricellular 
and multicellular flows obtained for high Rayleigh 

numbers. 
But is it enough to increase M and N to get good 

converged results? The stream function and tem- 
perature radial derivatives are expected to be non- 
periodic in the radial direction. Their Fourier co- 
efficients should then follow a l/M* asymptotic 
decreasing law [16, 171, giving rise to very bad second- 
order radial derivative evaluations and to a Gibbs 
phenomenon in radial fluxes close to the radial bound- 
aries. Such a well-known behavior is enhanced by the 
exp (X) function present in the equations to be solved. 
So, the full Fourier-Galerkin procedure leads to 
a mathematical problem which could be somewhat 

FIG. 2. (a) Isotherms and streamlines for &* = 200, R = 2, 

different from the original one and might well induce 
unicellular flow. (b) Isotherms and streamlines for 
Ra* = 200, R = 2, bicellular how. (c) Isotherms and stream- 

the observed puzzling results. lines for Ra* = 200, R = 2, tricellular flow. 
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FIG. 3. Isotherms and streamlines for Ra* = 1000, R = 2’j4, 
multicellular flow. 

(c) Linear stability analysis. A linear stability analy- 
sis of the multicellular 2D flows has been carried out 
with perturbations localized in the flow plane [18]. 
The basic motion has been numerically obtained with 
the FourierXalerkin method and orders of approx- 
imationuptoMxN= 16x16. 

Disturbance temperature and stream function have 
been expanded into Fourier series in both directions 
and with M x N = 16 x 16. Then these disturbances 

Table 1. Fourier-Galerkin method for R = 2. CI, initial 
conditions. Type 1, for unicellular flows: aij = 0, 
b, = 0.001 Vi, j. Type II, for bicellular flows: ai, = 0, all 
bO=Oexcept b13 = -0.1, br4=0.1, b15= -0.1. Type III, 
for tricellular flows : aij = 0, all b, = 0 except b,6 = -0.2, 

b,7 = 0.2, b,* = -0.2, b,9 = 0.2 

Ra* CI h4 N Nu: Flow 

120 
120 
120 
120 
120 
120 
200 
200 
200 
200 
200 

200 
200 
200 
200 
200 
200 
200 
300 
300 
300 
300 
300 
300 

I 10 10 
I 50 50 
II 16 16 
II 30 30 
III 30 30 
III 40 40 
I 12 12 
I 30 30 
II 30 30 
II 40 40 
II 50 50 

2.056 Unicellular 
2.050 Unicellular 
2.260 Bicellular 
2.266 Bicellular 
2.050 Unicellular 
2.050 Unicellular 
2.69 Unicellular 
2.68 Unicellular 
2.91 Bicellular 
2.90 Bicellular 
2.90 Bicellular 

III 12 12 3.17 
III 14 14 2.69 
III 16 16 2.97-3.03 
III 20 20 2.685 
III 30 30 3.00 
III 40 40 2.968 
III 50 50 2.968 
I 30 30 3.287 
II 30 30 3.37-3.73 
II 4040 3.45-3.57 
II 50 50 3.48-3.56 
III 30 30 3-3.70 
III 40 40 3.5tS3.60 

Tricellular 
Unicellular 
Tricellular 
Unicellular 
Tricellular 
Trioellular 
Tricellular 
Unicellular 
Bicellular 
Bicellular 
Bicellular 
Tricellular 
Tricellular 

Table 2. Fourier-Galerkin method for R = 2”’ 

Ra* CI M N Nu,* Flow 

500 I 10 10 
500 I 20 20 
500 I 30 30 
500 I 40 40 
500 II 16 16 
500 II 30 30 
500 II 40 40 
so0 III 30 30 
500 III 40 40 

1000 I 10 10 
1000 I 12 12 
1000 I 16 16 

1.913 
2.42 
2.40 
2.41 
2.21 
2.26 

2.2-2.40 
2.40 
2.40 
2.75 
3.51 

3.4-3.6 

Unicellular 
Tricellular 
Tricellnlar 
Tricellular 
Bicellular 
Bicellular 

Multicellular 
Tricellular 
Tricellular 
Unicellular 
Tricellular 
Tricellular 

have been computed with the same algorithm that has 
been previously used to obtain the basic motion. 

The cases R = 2’j4, 2”’ and 2 have been considered 
with Rayleigh numbers ranging from 50 to 1000. The 
computations made with these approximations (for 
the basic and the disturbance motions) do not allow us 
to find the results previously obtained by Himasekhar 
and Bau [6]. The discrepancy between these two studies 
might well be of numerical origin. 

2.3. Collocation-Chebyshev approximation 
(a) Formulation and numerical procedure. In this 

new development, we adopt a Fourier-Galerkin 
approximation for the periodic &direction and a 
collocation-Chebyshev approximation in the con- 
fined r-direction. 

The stream function $ and the temperature T are 
then expanded as follows : 

r 

i 

rj = 2 fn(X)sin(nY) (9) 
“=I 

T= I--GIX+ 5 g,(X)cos(nY). (10) 
n=O 

Table 3. Fourier-Galerkin method for R = 2’j4 

Ra* CI M N Nu; Flow 

250 I 16 16 
250 I 30 30 
250 II 16 16 
250 II 20 20 
250 II 30 30 
250 III 16 16 
250 III 30 30 
250 III 40 40 
500 I 16 16 
500 II 16 16 
500 III 16 16 
500 I 30 30 
500 II 40 40 
500 III 40 40 

1000 I 16 16 
1000 II 16 16 
1000 III 16 16 
1000 II 40 40 

1.027 
1.049 
1.027 
1.027 
1.048 
1.027 
1.050 
1.051 
1.303 
1.310 
1.303 
1.318 
1.320 
1.397 
1.749 
1.559 
1.749 
2.060 

Unicellular 
Multicellular 
Unicellular 
Unicellular 

Multicellular 
Unicellular 

Multicellular 
Multicellular 
Multicellular 
Multicellular 
Multicellular 

Tricellular 
Tricellular 

Multicellular 
Tricellular 
Bicellular 
Tricellular 

Multicellular 
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Expansions (9) and (10) are inserted in equations 
(1) and (2), which are then properly projected on the 
Fourier basis functions. 

The functions f, and gP are thus solutions of the 
second-order differential system 

I g;(x) - i$ g,(x) = G,(x) 
(12) 

wherex=2aX-l;xE-[-I, +I]. 
The boundary conditions for the functions f;(x) 

and g,(x) are 

f,(- 1) =&(+ 1) = 0 

and 

gn(-l) =gJ+l) =ovp. 

System (11) and (12) is discretized using the 
collocation-Chebyshev method with the commonly 
used Gauss-Lobatto points {x, = cos [jn/(M- 1)] 
j=O...M-1). 

The functions f,(x) and g,(x) are expanded in a 
truncated series of Chebyshev polynomials 

.f;(x> = ; L,J’m- I(X) 
m=, 

and 

where Tk(x) = cos (k arccos x). 
Let us recall that the density of the Gauss-Lobatto 

points is increased near the boundaries x = - 1 (i.e. 
r = 1) and x = + 1 (i.e. r = R); ensuring an accurate 
description of the radial boundary layers. 

The linear system coming from equations (11) (and 
(12)) is full and can be efficiently solved, in NM’ 
operations, by a diagonalization procedure of the 
Chebyshev second-order derivative operator, D* 2, 
properly modified to take into account the boundary 
conditions [19]. The diagonalization itself, performed 
once for all in a preprocessing step storage, is required 
only for the (M- 2) eigenvalues and (M- 2) * matrices 
(the eigenvector matrix and its inverse). 

The transient form (equation (12’)) of equation (12) 
is used to ensure the scheme stability 

y = [P-k2Z][gp]-[Gp] (12’) 

where 

k7Pl = 
&Ax,) 

[ I S&M- 2) 

I is the unity matrix and kZ = p2/4u*. The time inte- 

Table 4. Comparison between Fourier-Gdlerkin and col- 
location-Chebyshev methods for unicellular flows 

IWig* iV$ 
Ru* R M N (Chebyshev) (Galerkin) 

50 21,x IO 8 I .0000646 1.0000647 
100 21,x IO 8 I .000259 I .000258 
200 21X IO 8 1.001033 I .001030 
500 2”” IO 8 1.006427 I .006425 
50 2’? 10 8 1.001 I 1.0011 

100 2”” 10 8 1.0045 1.0045 
200 2’ ‘I 10 8 1.0177 1.0177 
500 2’ J IO 8 1.1021 1.1021 

1000 21/j 10 8 I .3299 I .3298 
50 2”: 10 8 I .02047 1.02054 

200 2’ * 10 8 I .2650 I .2658 
500 2”’ 16 10 1.9137 1.9131 
50 2 16 8 1.343 1.344 

120 2 16 16 2.053 2.056 
200 2 30 30 2.683 2.685 
300 2 30 30 3.309 1.287 

gration is performed with the exponential fitting 
scheme that has been described in Section 2.2(a). 

In order to analyze the spectral convergence of this 
new expansion, the coefficients O,, are calculated after 
each computation using the matrix [C] representing 
the transformation from the physical space to Cheby- 
shev transform space [ 161. 

(b) Results and comparison with Fourier- -G&r- 

kin method. To test the validity of this new numerical 
scheme, we first compare the results obtained with the 
collocation_Chebyshev method and Fourier-Gale&in 

method for the case of unicellular flows (Table 4). 
For all the radii ratios (R = 2”8, 2’/“, 42, 2) and 

all the Rayleigh numbers considered in the compu- 
tations, the numerical results are in good agreement. 

Then, we focus our attention on the case R = 2 
and the representation of the bicellular and tricellular 
flows. For the case Ra* = 200 and R = 2 the spectral 
accuracy of the two methods is studied very carefully. 
On Figs. 4(a) and 5(a) the evolutions of the spectral 
coefficients b,,(m) (for the Fourier-Galerkin method) 
and Q,,(m) (for the collocation_Chebyshev method) 
are compared for the bicellular and tricellular flows. 
For both cases, we observe that the spectral con- 
vergence upon x (i.e. r) is better for the collocation- 
Chebyshev method than for the Fourier-Galerkin 
method. For the approximation of 30 x 30, the spec- 
tral coefficients H,, decrease until lo-” while the CO- 

efficients b,, only decrease until IO- ‘. 
If we now examine the spectral convergence of the 

two methods upon 4, Figs. 4(b) and S(b) show a 
similar evolution for 8,,(n) and b,,,(n). Let US note 
that for N = 30, the spectral convergence on 4 is not 
sufficient, the lower coefficients are between lo- ’ and 
lo- 4 for the two methods. 

As might be expected, the spectral accuracy of the 
collocation-Chebyshev method to describe the solu- 

tion along the r-coordinate is better than the Fourier- 
Galerkin method. Due to the evolutions of the CO- 
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FIG. 4. Comparison between Fourier-Galerkin and collocation-Chebyshev spectral coefficients for bicellu- 
lar flow (A4 x N = 30 x 30), Ra* = 200, R = 2 : (a) variation with m for n = 0 ; (b) variation with n for 

??l= 

efficients I!$,,, as functions of m and n we decided to 
carry on our computations with the collocation- 
Chebyshev method limiting the order of approxi- 
mation M between 20 and 30 and increasing the order 
N up to 80 (Table 5). 

For Ra* = 200 (R = 2) Figs. 6(a) and (b) show the 
evolution of 0 ,,, = F(n) for the approximation 
M x N = 20 x 80 and the comparison with the approxi- 
mation 30 x 30. Both bicellular and tricellular flows 
are considered. For the bicellular flow the spectral 
coefficients decrease regularly after n - 30 to reach 
the value of 5 x lo-’ for n = 80. For the tricellular 
flow the coefficients also decrease after n = 30 but 
with numerous oscillations. 

The authors therefore believe that orders of 
approximation higher than N = 80 are required 
to describe, with a good accuracy, all the boundary 
layers which exist in the azimuthal direction for the 
tricellular flows and of course for the multicellular 
flows. 

To complete our study, we also analyzed the con- 
vergcnce of the computations based on the global 

Nusselt number Nu,* (Nu:= l -2gh(x = - 1)). On 
Figs. 7(a) and (b), the curves Nu,*=f(t) have been 
plotted for Ra* = 200, R = 2 and for the bicellular 
and tricellular flows (computed with the collocation- 
Chebyshev method M x N = 20 x 80). We obtained, 
with about 2200 iterations, a gdod convergence upon 
the Nusselt number. For the case Ra* = 300 and 
R = 2 we need more than 5000 iterations (for 
M x M = 20 x 80) to ensure a good convergence : the 
CPU time becomes higher than 15 min on IBM 3090 
VF (with vectorized code). 

3. EXPERIMENTAL STUDY 

3.1. Experimental apparatus and Christiansen effect 
In order to visualize the multicellular 2D flows, 

experiments have been realized with a cell (Fig. 8) 
corresponding to a radii ratio of R = 2. The inner and 
outer cylinders have a length L = 20 mm, the radius 
value is 40 mm for the inner cylinder and 80 mm for 
the outer cylinder. Both cylinders are in copper and 
they are kept at constant temperature with circulating 
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FIG. 5. Comparison between Fourier-Galerkin and collocation-Chebyshev spectral coefficients for tricel- 
lular Aow (M x N = 30 x 30), Ra* = 200, R = 2: (a) variation with m for n = 0; (b) variation with n for 

m= 1. 

Table 5. Collocation-Chebyshev method for R = 2. CI, I, 
II, III, initial conditions for unicellular, bicellular and tricellular 

flows respectively expressed in terms of f,(x,) and g,(x,) 

Ru* CI M N NU,* 

120 I 30 30 2.052 
120 II 30 30 2.261 
120 III 20 80 2.050 
200 I 30 30 2.683 
200 I 20 80 2.684 
200 II 30 30 2.913 
200 11 20 80 2.907 
200 III 16 16 2.5-3.12 
200 III 20 20 2.683 
200 III 30 30 3.001 
200 III 40 40 2.995 
200 III 20 80 3.000 
300 I 30 30 3.309 
300 I 20 80 3.310 
300 II 30 30 3.3c3.70 
300 II 40 40 3.33-3.58 
300 II 20 80 3.55-3.70 
300 III 30 30 3.42-3.70 
300 III 40 40 3.45-3.78 
300 III 20 80 3.310 

- 

Flow 

Unicellular 
Bicellular 

Unicellular 
Unicellular 
Unicellular 
Bicellular 
Bicellular 

Tricellular 
Unicellular 
Tricellular 
Tricellular 
Tricellular 
Unicellular 
Unicellular 
Bicellular 
Bicellular 
Bicellular 
Tricellular 
Tricellular 
Unicellular 

water. The Christiansen effect is used to visualize the 
thermal field for different Rayleigh numbers. The 
theory of the Christiansen effect has been developed 
by Christiansen [20], Raman [21], Clarke [22] and 
more recently by Klarsfeld [23]. 

For our experiments the porous matrix is made of 
small particles of special glass (diameter of 1200 pm) 
saturated with an organic liquid : chlorobenzene. The 
solid phase optical refractive index, n,, does not vary 
with the temperature while the fluid phase one, n,, 
varies appreciably with the temperature (Fig. 9). If 
the cell is isothermal, only the rays of wavelength A, 
with n,(i,) = n&J can cross it; the rays of wave- 
length different from i, are diffused : the cell is like a 
filter with a bandwidth centered around /I,. When 
natural convection appears, the nonisothermal cell is 
like a set of elementary filters, the isothermal lines. 
which are iso-optical index lines as well, being viewed 
as isochrom lines. This optical technique can only be 
used for the visualization of 2D phenomena. If the 
flow is 3D, the light is completely diffused by the 
successive slabs which constitute the medium and no 
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FIG. 6. Evolution of spectral coefficients as a function of n for coIIocation-Chebyshev method and different 
values of N (Ra* = 200, R = 2) : (a) bicellular flow; (b) tricellular flow. 

isotherm lines can be observed (the photographs are 
dark). 

The visualization is realized with discontinuous 
spectrum light-sources (Hg-Cd) (Fig. IO). In the 
experiments, the cell is lit with paralfel light, and an exit 
diaphragm stops the diffused light and a photograph 
of the thermal field is taken. 

The vertical glasses are isolated with polystyrene. 
Special care must be taken to fill the cell and to obtain 
a homogeneous medium. For each Rayleigh number, 
the steady state is reached in a few hours. In these 
experiments, we have been only concerned with the 
visualization of the thermaI field, no heat transfer rate 
measurements have been carried out. 

3.2. Results and discussion 
Two series of experiments have been made in order 

to prove the physical si~cance of the multicellular 
flows obtained with the numerical simulations. 

In the first series of experiments the cell has been 
divided in two equal parts of length L = 9.5 mm in 
order to prevent 3D perturbations from developing. 

The results obtained in this case are presented on 

photographs of Fig. 11 and correspond to the visu- 
alization of thermal fields for Rayleigh numbers of 59 
@hoto No. I), 109 (photo No. 2) and 213 (photo No. 
3) (each Rayleigh number is evaluated with an error 
ARa* = 5). Whatever the Rayleigh number is, a uni- 
cellular flow, symmetrical with respect to a vertical 
plane including the cylinder’s axis, is observed. As Ra* 
increases, the convective phenomena become more 
important and the isotherms are especially distorted 
in the upper part of the cell. (Note that with the 
Christiansen effect the blue color stands for high tem- 
peratures and the red color for low temperatures.) 
These results agree well with the numerical com- 
putations. (The photograph Ra* = 213 (Fig. 11) can 
be compared to Fig. 2(a), which corresponds to 
Ra* = 200, with a good approximation due to the 
experimental error on the evaluation of Ra*.) 

In the second series of experiments the length of the 
cell was L = 20 mm. The results obtained in this case 
are particularly interesting; they are presented in the 
photographs of Fig. 12. In this case we observe that 
when the Rayleigh number increases up to 250, the 
2D unicellular flow becomes 3D in the upper part of 
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FIG. 7. Evolution of Nusselt number as a function of time t for collocation-Chebyshev method 
(A4 x N = 20 x 80), Ra* = 200, R = 2 : (a) bicellular flow ; (b) tricellular flow. 

the annular region and still remains 2D in the lower 
part. These 3D perturbations lead to the apparition 
of a dark region which can be observed on the photo- 
graph corresponding to Ra* = 338 (photo No. 6). 
The other photographs of Fig. 12 have heen taken 

A, (T1 1 A, (Tz ) x 

FIG. 8. Experimental cell : 1, porous medium; 2, inner cyl- FIG. 9. Variation of Christiansen wavelength I, with tem- 
inder ; 3, glasses ; 4, outer cylinder. perature. 
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RA* = 59 
R=2 

RA” q 109 

R=2 

RA* = 213 
R=2 

FIG. 11. Thermal fields visualizations, unicellular flows for R = 2 : photo No. 1, Ra* = 59 ; photo No. 2, 
Ra* = 109; photo No. 3, Ra* = 213. 
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RA* = 
R=2 

RA*= 
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150 

338 

FIG. 12. Thermal fields visualizations, bicellular flows for R = 2: photo No. 4. Ru* = 69; photo NO. 5. 
Ra* = 150; photo No. 6, Ra* = 338. 
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FIG. 10. Visualization of thermal fields, optical scheme: S, light source Cd-Hg; C, cell; O,, 02, L,, LZ, 
lenses ; P, photographic film ; D,, D,, entrance and exit diaphragm. 

during the cooling phase. The difference of tem- 
perature between the two cylinders has been pro- 
gressively reduced. (Each photograph has been taken 
1 h after the flow stabilization.) The flow pattern 
becomes 2D again on all the annuli, which cor- 
responds to the disappearance of the dark region in 
the upper part of the cell and the appearance of the 
isochrom lines. 

The photograph of Ra* = 150 (photo No. 5) shows 
a 2D bicellular flow pattern, symmetrical with respect 
to the vertical axis, with a counter-rotating cell 
between 4 = 0” and 4 N 30”. This flow is similar to 
the one numerically obtained on Fig. 2(b). The 2D 
bicetlular flow still remains for I&* = 69 (‘photo No. 
4) and the u~~~ular flow is again observed for Ray- 
leigh number lower than 65 (+ 5). These results agree 
with the stability analysis developed by ref. [6]. How- 
ever, the experimental procedure used does not allow 
us to conclude that these observed 2D bicellular struc- 
tures are stable. It is possible that these structures 
turn out to be 2D unicellular flows after a few hours. 
Actually, other experiments are realized in order to 
specify, with more details, the onset of bicellular and 
multicellular flows. 

4. CONCLUDING REMARKS 

Natural convection in horizontal ~ylind~caI porous 
annuli has been studied numerically and exper- 
imentally. We focus our attention on the character- 
ization of the multicellular 2D flows, These flows have 
been calculated using both collocation-Chebyshev 
and full Fourier-Galerkin methods. 

Computations have been conducted for Rayleigh 
numbers ranging from 50 to 1000 and radii ratios 
of 2’iS, 2’/@ 2”’ and 2. In case of unicellular flows, 
the results ibtained by the two methods are in good 
agreement. 

For the description of the bicellular, tricellular and 
multi~Ilular flows the collo~tion~hebyshev 
method presents a better spatial radial accuracy. For 
the studied cases (&* = 120, 200, 300, R = 2 bi- 
cellular and tricellular flows) less than 30 collocation 
points are necessary to obtain a good accuracy in 
the r-direction while 30 Fourier components are not 
sufficient to obtain the same accuracy with the Four- 
ierGalerkin method. Concerning the convergence in 
the azimuthal direction, it is shown that almost 80 

terms in the Fourier series are required in both methods. 
The authors believe that a stability analysis performed 
with basic flows obtained through the collocation- 
Chebyshev method at high orders will give further 
details on the transition between the 2D multicellular 
flows. 

The experimental study allows us to observe the 
bicellular 2D structures ; however, more experiments 
are needed to prove the physical existence of these 
flows. Anyway the transition from unicellular to 
multicellular flows depends strongly on the initial 
experimental conditions. 
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ETUDE NUMERIQUE ET EXPERIMENTALE DES ECOULEMENTS 
MULTICELLULAIRES DE CONVECTION NATURELLE EN ESPACE 

ANNULAIRE POREUX 

R&me-On presente une etude numerique et experimentale de la convection naturelle bidimensionnelle 
en espace annulaire poreux horizontal. L’ecoulement, decrit par les equations de Darcy-Boussinesq, est 
obtenu par deux methodes numeriques differentes a savoir la methode de Fourier-Galerkin et la methode 
de collocation-Chebyshev. La precision spectrale des deux methodes est comparte. Les resultats numeriques 
montrent que la methode de collocation-Chebyshev permet une meilleure description des tcoulements 
dans la direction radiale. Une etude experimentale, utilisant I’effet Christiansen pour la visuahsation des 
champs thermiques, a permis de mettre en evidence, pour la premiere fois. l’existence physique 

d’ecoulements bicellulaires bidimensionnels trouves par voie numerique. 

NUMERISCHE UND EXPERIMENTELLE UNTERSUCHUNG DER 
MULTIZELLULAREN FREIEN KONVEKTION IN EINEM POR’%EN RINGRAUM 

Zusammenfassung-iiber die numerischc und experimentelle Untersuchung zweidimensionuler freier 
Konvektionsstrijmungen in einem gelttigten poriisen horizontalen Ringrdum wird berichtet. Die Stromung 
wird mit Hilfe zweidimensionaler Darcy- Boussinesq Gleichungen beschrieben, welche mit Hilfe zweier 
verschiedener numerischer Methoden geliist werden. Zur Anwendung kommt die Fourier-Galerkin 
Methode und fiir hohe Niherung die CollocationChebyshev Methode. Die spektrale Genauigkeit det 
beiden Verfahren wird verglichen. Die numerischen Berechnungen zeigen, da8 die CollocationChebyshev 
Methode genauere Ergebnisse liefert, insbesondere bei der Beschreibung der Grenzschicht am inneren und 
lul3eren Zyhnder. Experimentelle Untersuchungen. bei denen das Temperaturfeld mit Hilfc der Methode 
nach Christiansen sichtbar gemacht wurde, zeigen bizellulare zweidimensionale Strukturen. Diese 
Strukturen wurden bisher noch nie in konzentrischen Ringraumen mit Hilfe des Christiansen-Effekts 

beobachtet, sie stimmen gut mit den numerischen Ergebnissen iiberein. 

rIHCJIEHHOE Ii 3KCIIEPRMEHTAJIbHOE HCCJIEAOBAHME MHOFOIIrIEHHCTbIX 
CBOEO~HOKOHBEKTHBHbIX TEsEHFin B KOJIbHEBOM CJlOE I-IOPMCTOFO 

MATEPHAJIA 

,k,,,OT~k-%CneHHO B 3KCIIepHMeHTanbHO HCCJ‘enyEOTCK CB060~OKOHBeKTElBHbIe ,iByMepHbIe 

Te=ieHBIl Bl'OpU30HT~bHOMKOnb~eBOMCnOe HS2.IllleHHOt'O IlOpLiCTOrOMaTepUWla. Teqemre WCUAKOCTU, 

0nAcbIBaerdoe ilByMepHbIbxEi ypaBHeHanMw AapcwGyccAHecKa, onpenenrexa ABy~fi pa3nusribtMn 
npH6nEixeHHbIMH MeTOl,aMW, a HMeHHO,MeTOPOM @yebe-ranepKk%Ha W ~e6buueecKuM MeTOLIOM KOn- 

noualulk &xr npa6ns*emiti ~btcoKor0 ItOpKJW%. CpaBHEiBaeTCK CIIeKTpl+JIbHaK TO'fHOCTb 060~~ 
NTO~OB. ZIxcneHHbre pe3ynbTaTbl cwixeTenbcrByioT 0 TOM, YTO heron KonnoKawii 5iBnxeTcx 6onee 
TOSHEJM, oco6eriHo npn OIIiiCWIHH ILOTpZiHH4HbIX CJIOeB,+OpMHpyIoWXCK y BHyTpHHeI.0 II BHeIJAferO 
AHJlaiiApOB. 3KCnepHMeHTaJIbHOeHCCJIenOBaEHe C EiCIlOnb3OBaHHeM3+~KTaKpHCTHaH~HaDJlK BEiCya- 

nH3a~EiU TeWIOBbIX none% rIOKa3bUWeT HWIH'iUe LlByXSI'IeSiCTbIX AByMepHbIX CTpyKTyp. 3T&i CTpyKTypbI, 

HWKOI-Aa paHee He Ha6nEOnaBIIDWCK B Cny'iae KOHIIeHTPHVeCKHX IlEiJEiHApOB nOCP2ATBOM 3+‘&KTa Kpec- 


