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Abstract—A numerical and experimental study of free convection two-dimensional (2D) flows in a satu-
rated porous horizontal annulus is reported. The fluid motion, described by 2D Darcy-Boussinesq equa-
tions, is obtained from two different numerical methods, namely Fourier-Galerkin and collocation—
Chebyshev methods, for high approximations. A comparison of the spectral accuracy of these two methods
is carried out. Numerical results indicate that the collocation-Chebyshev method gives a better accuracy
especially for the description of the boundary layers developed near the inner and outer cylinders. An
experimental study using the Christiansen effect for the visualization of the thermal fields shows the
existence of bicellular 2D structures. These structures, which have never been previously observed for
concentric cylinders and by means of the Christiansen effect, are in good agreement with numerical results.

1. INTRODUCTION

THE STUDY of natural convection, in a porous layer
bounded by two horizontal isothermal concentric
cylinders, has a wide variety of technological appli-
cations ranging from thermal insulators such as gas-
lines in gas-cooled reactors, cryogenics, underground
cable systems, storage of thermal energy, etc.

The problem of accurately determining the fluid
flow and heat transfer fields has proved to be quite
challenging and has stimulated a large number of
investigations over the past 20 years.

The main results concern the numerical study of the
two-dimensional (2D) steady state which appears in
the porous layer for low Rayleigh numbers. Several
approaches have been developed such as the finite
difference method and the perturbation method (Cal-
tagirone [1] with ADI method, Burns and Tien [2]
with SOR method), the finite element method
(Mojtabi et al. [3]) and the Galerkin spectral method
(Charrier-Mojtabi and Caltagirone [4], Rao et al.
[5], Himasekhar and Bau [6]). These authors [4-6]
expanded the temperature and the stream function
with truncated Fourier series with orders of approxi-
mation less than 20 x 20 (in the r- and ¢-directions,
respectively).

Taking into account the radiative effect, Echigo er
al. [7] studied the 2D steady state using a finite differ-
ence method. Bau [8] with a perturbation method,

analysed the effect of eccentricity on the overall heat
transfer rate. Himasekhar and Bau [9] used a boun-
dary-layer technique and determined a correlation law
between the Nusselt number, the Rayleigh number,
the radii ratio and the eccentricity for an eccentric
annulus and large Rayleigh numbers.

Caltagirone [1] proposed a three-dimensional (3D)
numerical analysis using a finite element method but
no significant results have been obtained to explain
the experimentally observed flow pattern. Fukuda et
al. [10] obtained 3D results using a finite difference
method (SOR) for inclined annuli, but these results
could not be extended to the horizontal case due to the
presence of the gravitational force axial component
direction which does not exist in a horizontal annulus.
Charrier-Mojtabi et al. [11] used a 3D Galerkin
scheme expanding the temperature and the velocity
fields into truncated Fourier series, but only low
orders of approximation have been considered. More
recently, Rao et al. [12] have developed the tem-
perature and the potential vector fields into Fourier
series with orders of approximation up to 10x 13 x 5
(in the r-, ¢-, and z-directions, respectively). For all
these 3D studies, the authors assume that the flow is
symmetrical with respect to a vertical plane including
the cylinder’s axis. According to the experiments, this
assumption is valid for the 2D state. However, for the
3D study, this assumption may reduce the generality
of the problem.
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NOMENCLATURE
g gravitational acceleration Y transformed coordinate, ¢.
K permeability of the porous medium
L axial length of the cell Greek symbols
Nuf  average Nusselt number X 1/In(R)
r,r,  inner and outer cylinder radii B thermal expansion coefficient of the fluid
r radial distance € porosity of the porous medium
r coordinate in radius direction scaled by A¥ equivalent thermal conductivity of the
7 saturated porous medium
R ratio of the outer to the inner radius v kinematic viscosity of the fluid
Ra*  Rayleigh number, (pc);  heat capacity of the fluid
gBK(T;— T )ri(pc)d(A*v) ¢ angular coordinate
T temperature 1/ stream function.
T dimensionless temperature, |
(T"=THNT,—T,) Subscripts
T, T, inner and outer cylinder temperatures i inner
t dimensionless time o outer
X transformed coordinate, Inr ’ real variables. ;
!

Stability studies have been carried out in refs. [1, 6].
Caltagirone [1] has studied the transition between the
steady unicellular 2D state and the 3D state, Hima-
sckhar and Bau [6] have proposed a linear stability
analysis of the multicellular 2D flows with 2D
perturbations localized in the basic flow plane.

Experimental studies about this subject were first
developed by Cloupeau and Klarsfeld [13] using the
Christiansen effect to visualize the thermal fields cor-
responding to the unicellular 2D flows. Caltagirone
[1] has determined, by means of temperature measure-
ments, the critical Rayleigh number for the transition
between the unicellular 2D flow and the 3D flow
pattern. Bau et al. [14] have observed 2D multicellular
structure in a Hele—Shaw cell for an eccentric annulus,
but this multicell structure turned out to be unstable
and became unicellular after a period of time.

In the present study, the accuracy of the Fourier—
Galerkin spectral method is analysed, especially for
the representation of the multicellular 2D flows which
appear for high Rayleigh numbers. Orders of approxi-
mation up to 50 x 50 are considered. However, the
spectral convergence of this method is not satis-
factory ; so a new representation of the solution using
a collocation—~Chebyshev approximation, in the radial
(confined) direction, is developed and a comparison
between these two numerical methods is carried out.
In order to prove the physical existence of multi-
cellular 2D flows, obtained numerically, several exper-
iments have been made, using the Christiansen effect
to visualize the thermal fields. The experimental con-
ditions inducing the apparition of the bicellular flow
are investigated with particular attention.

2. THE NUMERICAL APPROACH

2.1. The 2D problem formulation
Let us consider a porous annular region bounded
by two horizontal coaxial cylinders. The inner and

outer cylinders, of radii », and r,, respectively, are
maintained at constant and uniform temperatures, T,
and T,, respectively, with 7T, < T,. The porous
medium, with porosity ¢ and permeability X, is satu-
rated by an incompressible Newtonian fluid of kine-
matic viscosity v, thermal expansion coefficient § and
density p. The saturated porous medium is equivalent
to an artificial fluid of heat capacity (po)* =
e(pc)e+ (1 —e){(pc), and of thermal conductivity
A*. The radii ratio R = r /r; characterizes the system’s
geometry for the 2D state. In order to simplify the
formulation, several classical assumptions have
been made.

(i) The Boussinesq approximation and Darcy’s
law are assumed to be valid.

(i) The inertia terms and viscous dissipations are
neglected.

(iii) The fluid is assumed to be in thermal equi-
librium with the porous matrix.

A conformal transformation is used to shift from
polar (r, ¢) to cartesian coordinates (X = Inr, ¥ = ¢).
The initial domain [1, R]x [0, n] thus becomes a
rectangular domain [0, In R] x [0, =] (see Fig. 1).

In dimensionless form, the governing equations,
formulated in terms of stream function ¥ and tem-
perature T, then read, for the steady 2D state

Vi = Ra* exp (X)] si Ya—T+ sYa—]j

= Ra* exp nY o +eos Yoo )
oToy  oTow

= 2

VT oX0Y adYox @

The Rayleigh number of filtration appears in these
equations
_ 9BK(T — To)ri(pe)e

*
Ra A*y
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According to experimental results, we assume that
the flow is symmetrical with respect to the vertical
plane containing the cylinder’s axis. The boundary
conditions can then be summarized as follows :

X=0: T=1 y=0vVY ?3)
1
X=lnR=-: T=0 y=0VY @
oT
Y=0,n: ap=0 ¥=0vX ©)

2.2. Full Fourier—Galerkin approximation

(a) Formulation. The stream function ¢ and the
temperature T are expanded into Fourier series in
both, radial and azimuthal, directions

i a,.,, sin (mnoX) sin (ny) ©)
1n=1

Mk

v=

m

M N
T=1-aX+ Y Y by,sin(mraX)cos(@y) (7)
m=1n=0

where the coefficients a,,, and b,,, are functions of the
Rayleigh number and the radii ratio R. To deal with
the nonlinear advection term in equation (2) a fic-
titious time 7 is introduced and a transient form of
energy equation (2') is used

éxXaoYy oYox/) @)

The Fourier series (equations (6) and (7)) are
inserted into equations (1) and (2") which in turn are
projected on each Fourier basis function, sin (praX)
x sin (gY) and sin (praX) cos (gY) for the momentum
and energy equations, respectively.

The coefficients b, and a,, are solutions of a system

of coupled, nonlinear, first-order in time differential
equations.

(b) 2D multicellular flow analysis. All the previous
studies of this problem performed by the Fourier-
Galerkin method used orders of approximation less
than M x N = 20 x 20.

In order to test the accuracy of the Fourier—Galer-
kin spectral method, we focus our attention on the
choice of M and N. Of course, it is not necessary to
use high orders M, N for the representation of the
unicellular flows, but when the bicellular, tricellular
or multicellular flows are considered, higher orders of
approximation are required, to capture the various
expected boundary layers, appearing not only on both
ends of the confined radial direction, but also in the
azimuthal direction at the cell interfaces. Thus, orders
of approximation up to 50 x 50 have been chosen to
describe the flows corresponding to Rayleigh numbers
ranging from 50 to 1000 and radii ratios of 2'/3, 2174,
2Y%and 2.

Using the fast Fourier transform (FFT) to calculate
the nonlinear term (V grad T) leads to a significant
gain of CPU time. The time integration is performed
following an exponential fitting scheme [15] which has
been proved to be better than the classical Adams—
Bashforth scheme used in our previous work [4].

Applied to the spectral formulation of the energy
equation

ds,
d_:q = —L(p’ Q)bpq +N(P, q)

(L and N are respectively linear and nonlinear oper-

ators of the system), this exponential scheme reads
N"(p, q)]

L(p,9)

bt = b;',q—{1—exp[—-L(p,q)d'c]}[b;',q—
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where N"(p, ¢) contains all the known quantities at
time level n dz.

The convergence test is based on the global Nusselt
number Nuf

Nk InR (*0T
U= — —- -
& T ) Or

M

d¢ =1-=n Z mb,,.

8

The convergence of the spectral coefficients is also
considered.

For each pair (Ra*, R) investigated the unicellular
flow is obtained. For a given (Ra*, R) bicellular,
tricellular or multicellular flows are obtained by intro-
ducing various initial conditions if Ra* is higher than
a critical value which depends on R. Figures 2(a)-(c)
show the different flow patterns for Ra* = 200 and
R = 2 and Fig. 3 shows the multicellular flow obtained
for Ra* = 1000 and R=2"% In Tables 1-3, the
results of the computations for R =2, 2"/2 and 2'*
are summarized.

Let us consider the case Ra* =200, R =2 and
initial conditions which must induce a tricellular 2D
flow. For the approximation Mx N =12x12 we
indeed obtain a tricellular 2D flow with a global Nus-
selt number Nuf= 3.17, a good convergence of the
solution is observed. With the same initial conditions
and Mx N = 14x14, we obtain a unicellular flow
with a global Nusselt number of 2.69. Mx N =
16 x 16, oscillations occur in the computations and no
steady state could be obtained.

With M x N = 20x20 the unicellular 2D flow is
observed again and for M x N =30x30; 40x40;
50 x 50 the flow is tricellular and the overall heat
transfer is characterized by a global Nusselt number
close to 3.

A similar behavior is found again for R = /2 and
2'* For Ra* and R fixed and for identical initial
conditions, a unicellular or bicellular or tricellular or
multicellular flow can be obtained, depending only on
orders of approximations.

The first conclusion to be drawn from these results
is that orders of approximation higher than 50 x 50
must be chosen to represent the bicellular, tricellular
and multicellular flows obtained for high Rayleigh
numbers.

But is it enough to increase M and N to get good
converged results? The stream function and tem-
perature radial derivatives are expected to be non-
periodic in the radial direction. Their Fourier co-
efficients should then follow a 1/M? asymptotic
decreasing law [16, 17], giving rise to very bad second-
order radial derivative evaluations and to a Gibbs
phenomenon in radial fluxes close to the radial bound-
aries. Such a well-known behavior is enhanced by the
exp (X) function present in the equations to be solved.
So, the full Fourier-Galerkin procedure leads to
a mathematical problem which could be somewhat
different from the original one and might well induce
the observed puzzling results.

r=1
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(a)

FiG. 2. (a) Isotherms and streamlines for Ra* =200, R = 2,

unicellular flow. (b) Isotherms and streamlines for

Ra* = 200, R = 2, bicellular flow. (¢) Isotherms and stream-
lines for Ra* = 200, R = 2, tricellular flow.
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Fi1G. 3. Isotherms and streamlines for Ra* = 1000, R = 24,
multicellular flow.

(c) Linear stability analysis. A linear stability analy-
sis of the multicellular 2D flows has been carried out
with perturbations localized in the flow plane [18].
The basic motion has been numerically obtained with
the Fourier—Galerkin method and orders of approx-
imation up to M x N = 16 x 16.

Disturbance temperature and stream function have
been expanded into Fourier series in both directions
and with M x N = 16 x 16. Then these disturbances

Table 1. Fourier—Galerkin method for R = 2. CI, initial
conditions. Type 1, for unicellular flows: a;=0,
b, =0.001Vi, j. Type II, for bicellular flows: a; =0, all
by =0 except by3 = —0.1, b, = 0.1, by5 = —0.1. Type III,
for tricellular flows: a;; =0, all b; = 0 except b, = —0.2,
b;=02,b3=—-02,b,,=02

Ra* CI M N Nu¥ Flow
120 I 10 10 2.056 Unicellular
120 I 50 50 2.050 Unicellular
120 11 16 16 2.260 Bicellular
120 i 30 30 2.266 Bicellular
120 m 30 30 2.050 Unicellular
120 il 40 40 2.050 Unicellular
200 1 12 12 2.69 Unicellular
200 1 30 30 2.68 Unicellular
200 I 30 30 291 Bicellular
200 I 40 40 2.90 Bicellular
200 I 50 50 2.90 Bicellular
200 I 12 12 3.17 Tricellular
200 111 14 14 2.69 Uniceltular
200 I 16 16 2.97-3.03 Tricetlular
200 III 20 20 2.685 Unicellular
200 m 30 30 3.00 Tricellular
200 I 40 40 2.968 Tricellular
200 I 50 50 2.968 Tricellular
300 1 30 30 3,287 Unicellular
300 11 30 30 3.37-3.73 Bicellular
300 i ! 40 40 3.45-3.57 Bicellular
300 1 50 50 3.48-3.56 Bicellular
300 11 30 30 3-3.70 Tricellular
300 i1 40 40 3.50-3.60 Tricellular
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Table 2. Fourier-Galerkin method for R = 2'/2

Ra* CI M N Nu} Flow
500 I 10 10 1.913 Unicellular
500 I 20 20 242 Tricellular
500 I 30 30 2.40 Tricellular
500 I 40 40 2.41 Tricellular
500 I 16 16 2.21 Bicellular
500 I 30 30 2.26 Bicellular
500 I 40 40 22240  Multicellular
500 il 30 30 2.40 Tricellular
500 1 40 40 2.40 Tricellular

1000 I 10 10 2.75 Unicellular

1000 I 12 12 3.51 Tricellular

1000 1 16 16 34-3.6 Tricellular

have been computed with the same algorithm that has
been previously used to obtain the basic motion.

The cases R = 2"* 2Y2 and 2 have been considered
with Rayleigh numbers ranging from 50 to 1000. The
computations made with these approximations (for
the basic and the disturbance motions) do not allow us
to find the results previously obtained by Himasekhar
and Bau [6]. The discrepancy between these two studies
might well be of numerical origin.

2.3. Collocation—Chebyshev approximation

(a) Formulation and numerical procedure. In this
new development, we adopt a Fourier-Galerkin
approximation for the periodic ¢-direction and a
collocation—Chebyshev approximation in the con-
fined r-direction.

The stream function ¢ and the temperature T are
then expanded as follows :

N
Y= f,(X)sin@Y) )]
n=1
N
T=1-aX+ ) g,(X)cos(nY). (10)
n=0
Table 3. Fourier-Galerkin method for R = 2"/¢
Ra* Cl M N Nu} Flow
250 I 16 16 1.027 Unicellular
250 I 30 30 1.049 Multicellular
250 I 16 16 1.027 Unicellular
250 i 20 20 1.027 Unicellular
250 I 30 30 1.048 Multicellular
250 III 16 16 1.027 Unicellular
250 I 30 30 1.050 Multicellular
250 I 40 40 1.051 Multicellular
500 I 16 16 1.303 Multicellular
500 I 16 16 1.310 Multicellular
500 111 16 16 1.303 Multicellular
500 I 30 30 1.318 Tricellular
500 I 40 40 1.320 Tricellular
500 111 40 40 1.397 Multicellular
1000 I 16 16 1.749 Tricellular
1000 11 16 16 1.559 Bicellular
1000 111 16 16 1.749 Tricellular
1000 I 40 40 2.060 Multicellular
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Expansions (9) and (10) are inserted in equations
(1) and (2), which are then properly projected on the
Fourier basis functions.

The functions f, and g, are thus solutions of the
second-order differential system

r [)2
§00 = 3 ) = E)
(1D
Fp= Fp(g;;-%lsg;i\l’gp-#l’gp\l)

2

)~ 50,5 = G, )

L Gp= Gp(erv f;ﬂ—ns f[‘)wm 9ns g;l)

where x = 20X —1; xe[—1, +1].
The boundary conditions for the functions f,(x)
and g,(x) are

(12)

L= =f(HFD) =0
and
gp(—1) =g,(+1) =0Vp.

System (11) and (12) is discretized using the
coliocation—Chebyshev method with the commonly
used Gauss-Lobatto points {x; = cos [jn/(M—1)]
j=0...M—1j}.

The functions f,(x) and g,(x) are expanded in a
truncated series of Chebyshev polynomials

M
.fp(x) = Z ﬁmmef l(x)
and

M
9p(X) = Y O, T 1 (%)
m=1
where T,(x) = cos (k arccos x).

Let us recall that the density of the Gauss—Lobatto
points is increased near the boundaries x = —1 (i.e.

= 1) and x = +1 (i.e. r = R), ensuring an accurate
description of the radial boundary layers.

The linear system coming from equations (11) (and
(12)) is full and can be efficiently solved, in NM*
operations, by a diagonalization procedure of the
Chebyshev second-order derivative operator, D*?,
properly modified to take into account the boundary
conditions [19]. The diagonalization itself, performed
once for all in a preprocessing step storage, is required
only for the (M — 2) eigenvalues and (M —2) matrices
(the eigenvector matrix and its inverse).

The transient form (equation (12)) of equation (12)
is used to ensure the scheme stability

A9 _ (pe2 _kenig,1-16,]

ot (129

where

| 9(x)
Lgp} = [gp(ng 2)]

[ is the unity matrix and k* = p?/4a®. The time inte-
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Table 4. Comparison between Fourier-Galerkin and col-
location—Chebyshev methods for unicellular flows

e
Nu}

Nug

Ra* R M N (Chebyshev) (Galerkin)

50 2Y% 10 8 1.0000646 1.0000647
0o 2" 10 8§ 1.000259 1.000258
200 2¥% 10 8 1.001033 1.001030
500 2% 10 8§ 1.006427 1.006425

50 2'* 10 8 1.0011 1.0011
100 2" 10 8 1.0045 1.0045
200 2" 10 8 1.0177 1.0177
500 2Y* 10 8 1.1021 1.1021
1000 2¥* 10 8 1.3299 1.3298

50 2Y* 10 8 1.02047 1.02054
200 2¥* 10 8 1.2650 1.2658
500 2" 16 10 1.9137 1.9131

50 2 16 8 1.343 1.344

120 2 16 16 2.053 2.056

200 2 30 30 2.683 2.685

300 2

3.309 3.287

gration is performed with the exponential fitting
scheme that has been described in Section 2.2(a).

In order to analyze the spectral convergence of this
new expansion, the coefficients 8,,, are calculated after
each computation using the matrix [C] representing
the transformation from the physical space to Cheby-
shev transform space [16].

(b) Results and comparison with Fourier-Galer-
kin method. To test the validity of this new numerical
scheme, we first compare the results obtained with the
collocation—Chebyshev method and Fourier-Galerkin
method for the case of unicellular flows (Table 4).

For all the radii ratios (R =2"% 2'* /2, 2) and
all the Rayleigh numbers considered in the compu-
tations, the numerical results are in good agreement.

Then, we focus our attention on the case R =2
and the representation of the bicellular and tricellular
flows. For the case Ra* = 200 and R = 2 the spectral
accuracy of the two methods is studied very carefully.
On Figs. 4(a) and 5(a) the evolutions of the spectral
coefficients b, o(m) (for the Fourier-Galerkin method)
and 6,,,(m) (for the collocation-Chebyshev method)
are compared for the bicellular and tricellular flows.
For both cases, we observe that the spectral con-
vergence upon x (i.e. #) is better for the collocation—
Chebyshev method than for the Fourier—Galerkin
method. For the approximation of 30 x 30, the spec-
tral coefficients 8,,, decrease until 10~° while the co-
efficients b,,, only decrease until 10~ °,

If we now examine the spectral convergence of the
two methods upon ¢, Figs. 4(b) and 5(b) show a
similar evolution for 8,,(n) and b,,(n). Let us note
that for N = 30, the spectral convergence on ¢ is not
sufficient, the lower coefficients are between 10~ * and
10~ * for the two methods.

As might be expected, the spectral accuracy of the
collocation-Chebyshev method to describe the solu-
tion along the r-coordinate is better than the Fourier—
Galerkin method. Due to the evolutions of the co-
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FiG. 4. Comparison between Fourier~Galerkin and collocation—Chebyshev spectral coefficients for bicellu-
lar flow (M x N = 30 x 30), Ra* =200, R = 2: (a) variation with m for n = 0; (b} variation with » for

m=

efficients 8,,, as functions of m and n we decided to
carry on our computations with the collocation—
Chebyshev method limiting the order of approxi-
mation M between 20 and 30 and increasing the order
N up to 80 (Table ).

For Ra* = 200 (R = 2) Figs. 6(a) and (b) show the
evolution of #,,= % (n) for the approximation
M x N =20 % 80 and the comparison with the annrmn-

X SV QG 00 LOpalisOll Wil e ap

mation 30 x 30. Both bicellular and triceltular ﬂows
are considered. For the bicellular flow the spectral
coefficients decrease regularly after n = 30 to reach
the value of 5x 1077 for n = 80. For the tricellular
flow the coefficients also decrease after n = 30 but
with numerous oscillations.

The authors therefore believe that orders of
annroxzmatlon hmher than N = 80 are rgnu_;red
to describe, with a good accuracy, all the boundary
layers which exist in the azimuthal direction for the
triceliuiar flows and of course for the multicellular
flows.

To complete our study, we also analyzed the con-

vergence of the computations based on the global

1
L,

Nusselt number Nu¥ (Nuf=
Figs. 7(a) and (b), the curves Nug = f(f) have been
plotted for Ra* = 200, R = 2 and for the bicellular
and tricellular flows (computed with the collocation—
Chebyshev method M x N = 20 x 80). We obtained,
with about 2200 iterations, a good convergence upon
the Nusselt number. For the case Ra* =300 and
R =2 we need more than 5000 iterations (for
M x M = 20 x 80) to ensure a good convergence : the
CPU time becomes higher than 15 min on IBM 3090
VF (with vectorized code).

1-2g5(x = —1)). On

3.1. Experimental apparatus and Christiansen effect
In order to visualize the multicellular 2D flows,
experiments have been realized with a cell (Fig. 8)
corresponding to a radii ratio of R = 2. The inner and
outer cylinders have a length L = 20 mm, the radius
value is 40 mm for the inner cylinder and 80 mm for
the outer cylinder. Both cylinders are in copper and
they are kept at constant temperature with circulating
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FI1G. 5. Comparison between Fourier-Galerkin and collocation—-Chebyshev spectral coefficients for tricel-

lular flow (M x N = 30 x 30), Ra*

m

Table 5. Collocation—Chebyshev method for R = 2. CI, I,
11, 111, initial conditions for unicellular, bicellular and triceltular
flows respectively expressed in terms of f,(x;) and g,(x,)

Ra* CI M N Nu} Flow
120 1 30 30 2.052 Unicellular
120 I 30 30 2.261 Bicellular
120 III 20 80 2.050 Unicellular
200 1 30 30 2.683 Unicellular
200 I 20 80 2.684 Unicellular
200 Im 30 30 2913 Bicellular
200 Im 20 80 2.907 Bicetlular
200 I 16 16 2.5-3.12 Tricellular
200 I 20 20 2.683 Unicellular
200 I 30 30 3.001 Tricellular
200 I 40 40 2.995 Tricellular
200 I 20 80 3.000 Tricellular
300 1 30 30 3.309 Unicellular
300 1 20 80 3.310 Unicellular
300 I 30 30 3.30-3.70 Bicellular
300 11 40 40 3.33-3.58 Bicellular
300 Im 20 80 3.55-3.70 Bicellular
300 I 30 30 3.42-3.70 Tricellular
300 I 40 40 3.45-3.78 Tricellular
300 III 20 80 3.310 Unicellular

200, R = 2: (a) variation with m for n = 0; (b) variation with n for

= 1.

water. The Christiansen effect is used to visualize the
thermal! field for different Rayleigh numbers. The
theory of the Christiansen effect has been developed
by Christiansen [20], Raman [21], Clarke [22] and
more recently by Klarsfeld [23].

For our experiments the porous matrix is made of
small particles of special glass (diameter of 1200 um)
saturated with an organic liquid : chlorobenzene. The
solid phase optical refractive index, ng, does not vary
with the temperature while the fluid phase one, n,,
varies appreciably with the temperature (Fig. 9). If
the cell is isothermal, only the rays of wavelength A,
with ng(4.) = ne(4.) can cross it; the rays of wave-
length different from 4, are diffused : the cell is like a
filter with a bandwidth centered around A. When
natural convection appears, the nonisothermal cell is
like a set of elementary filters, the isothermal lines,
which are iso-optical index lines as well, being viewed
as isochrom lines. This optical technique can only be
used for the visualization of 2D phenomena. If the
flow is 3D, the light is completely diffused by the
successive slabs which constitute the medium and no
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Fic. 6. Evolution of spectral coefficients as a function of # for collocation—-Chebyshev method and different
values of N (Ra* = 200, R = 2): (a) bicellular flow; (b) tricellular flow.

isotherm lines can be observed (the photographs are
dark).

The visualization is realized with discontinuous
spectrum light-sources (Hg-Cd) (Fig. 10). In the
experiments, the cell is lit with paraliel light, and an exit
diaphragm stops the diffused light and a photograph
of the thermal field is taken.

The vertical glasses are isolated with polystyrene.
Special care must be taken to fill the cell and to obtain
a homogeneous medium. For each Rayleigh number,
the steady state is reached in a few hours. In these
experiments, we have been only concerned with the
visualization of the thermal field, no heat transfer rate
measurements have been carried out.

3.2. Results and discussion

Two series of experiments have been made in order
to prove the physical significance of the multicellular
flows obtained with the numerical simulations.

In the first series of experiments the cell has been
divided in two equal parts of length L = 9,5 mm in
order to prevent 3D perturbations from developing.

The results obtained in this case are presented on

photographs of Fig. 11 and correspond to the visu-
alization of thermal fields for Rayleigh numbers of 59
(photo No. 1), 109 (photo No. 2) and 213 (photo No.
3) (each Rayleigh number is evaluated with an error
ARa* = 5). Whatever the Rayleigh number is, a uni-
cellular flow, symmetrical with respect to a vertical
plane including the cylinder’s axis, is observed. As Ra*
increases, the convective phenomena become more
important and the isotherms are especially distorted
in the upper part of the cell. (Note that with the
Christiansen effect the blue color stands for high tem-
peratures and the red color for low temperatures.)
These results agree well with the numerical com-
putations. (The photograph Ra* = 213 (Fig. 11) can
be compared to Fig. 2(a), which corresponds to
Ra* =200, with a good approximation due to the
experimental error on the evaluation of Ra*.)

In the second series of experiments the length of the
cell was L =20 mm. The results obtained in this case
are particularly interesting ; they are presented in the
photographs of Fig. 12. In this case we observe that
when the Rayleigh number increases up to 250, the
2D unicellular flow becomes 3D in the upper part of
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Fic. 7. Evolution of Nusselt number as a function of time ¢ for collocation-Chebyshev method
(M x N = 20 x 80), Ra* = 200, R = 2: (a) bicellular flow ; (b) tricellular flow.

the annular region and still remains 2D in the lower
part. These 3D perturbations lead to the apparition
of a dark region which can be observed on the photo-
graph corresponding to Ra* = 338 (photo No. 6).
The other photographs of Fig. 12 have been taken

[}
t
]
'

)‘c(Tl) Ac(TZ) A

FiG. 8. Experimental cell: 1, porous medium; 2, inner cyl-  FiG. 9. Variation of Christiansen wavelength A with tem-
inder; 3, glasses; 4, outer cylinder. perature.
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F1G. 11. Thermal fields visualizations, unicellular flows for R = 2: photo No. 1, Ra* = 59; photo No. 2,
Ra* = 109; photo No. 3, Ra* = 213.
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Fii. 12. Thermal fields visualizations, bicellular flows for R = 2: photo No. 4. Ra* = 69 ; photo No. 5.
Ra* = 150 photo No. 6, Ra* = 338.
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FiG. 10. Visualization of thermal fields, optical scheme : S, light source Cd-Hg; C, cell; O, Oy, Ly, L,
lenses ; P, photographic film ; D,, D,, entrance and exit diaphragm.

during the cooling phase. The difference of tem-
perature between the two cylinders has been pro-
gressively reduced. (Each photograph has been taken
1 h after the flow stabilization.) The flow pattern
becomes 2D again on all the annuli, which cor-
responds to the disappearance of the dark region in
the upper part of the cell and the appearance of the
isochrom lines.

The photograph of Ra* = 150 (photo No. 5) shows
a 2D bicellular flow pattern, symmetrical with respect
to the vertical axis, with a counter-rotating cell
between ¢ = 0° and ¢ ~ 30°. This flow is similar to
the one numerically obtained on Fig. 2(b). The 2D
bicellular flow still remains for Ra* = 69 (photo No.
4) and the unicellular flow is again observed for Ray-
leigh number lower than 65 (+5). These results agree
with the stability analysis developed by ref. [6]. How-
ever, the experimental procedure used does not allow
us to conclude that these observed 2D bicellular struc-
tures are stable. It is possible that these structures
turn out to be 2D unicellular flows after a few hours.
Actually, other experiments are realized in order to
specify, with more details, the onset of bicellular and
multicellular flows.

4. CONCLUDING REMARKS

Natural convection in horizontal cylindrical porous
annuli has been studied numerically and exper-
imentally. We focus our attention on the character-
ization of the multicellular 2D flows, These flows have
been calculated using both collocation—-Chebyshev
and full Fourier—Galerkin methods.

Computations have been conducted for Rayleigh
numbers ranging from 50 to 1000 and radii ratios
of 28 2Y4% 212 and 2. In case of unicellular flows,
the results obtained by the two methods are in good
agreement.

For the description of the bicellular, tricellular and
multicellalar flows the collocation—Chebyshev
method presents a better spatial radial accuracy. For
the studied cases (Re* = 120, 200, 300, R =2 bi-
cellular and tricellular flows) less than 30 collocation
points are necessary to obtain a good accuracy in
the r-direction while 30 Fourier components are not
sufficient to obtain the same accuracy with the Four-
ier—Galerkin method. Concerning the convergence in
the azimuthal direction, it is shown that almost 80

terms in the Fourier series are required in both methods.
The authors believe that a stability analysis performed
with basic flows obtained through the collocation—
Chebyshev method at high orders will give further
details on the transition between the 2D multicellular
flows.

The experimental study allows us to observe the
bicellular 2D structures ; however, more experiments
are needed to prove the physical existence of these
flows. Anyway the transition from unicellular to
multicellular flows depends strongly on the initial
experimental conditions.
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ETUDE NUMERIQUE ET EXPERIMENTALE DES ECOULEMENTS
MULTICELLULAIRES DE CONVECTION NATURELLE EN ESPACE
ANNULAIRE POREUX

Résumé—On présente une étude numérique et expérimentale de la convection naturelle bidimensionnelle
en espace annulaire poreux horizontal. L’écoulement, décrit par les équations de Darcy—Boussinesq, est
obtenu par deux méthodes numériques différentes d savoir la méthode de Fourier-Galerkin et la méthode
de collocation—-Chebyshev. La précision spectrale des deux méthodes est comparée. Les résultats numériques
montrent que la méthode de collocation-Chebyshev permet une meilleure description des écoulements
dans la direction radiale. Une étude expérimentale, utilisant I’effet Christiansen pour la visualisation des
champs thermiques, a permis de mettre en évidence, pour la premiére fois, I'existence physique
d’écoulements bicellulaires bidimensionnels trouvés par voie numérique.

NUMERISCHE UND EXPERIMENTELLE UNTERSUCHUNG DER
MULTIZELLULAREN FREIEN KONVEKTION IN EINEM POROSEN RINGRAUM

Zusammenfassung— Uber die numerische und experimentelle Untersuchung zweidimensionaler freier
Konvektionsstromungen in einem geséttigten porosen horizontalen Ringraum wird berichtet. Die Stromung
wird mit Hilfe zweidimensionaler Darcy-Boussinesq Gleichungen beschrieben, welche mit Hilfe zweter
verschiedener numerischer Methoden gelost werden. Zur Anwendung kommt die Fourier-Galerkin
Methode und fir hohe Niherung die Collocation—Chebyshev Methode. Die spektrale Genauigkeit der
beiden Verfahren wird verglichen. Die numerischen Berechnungen zeigen, dafl die Collocation-Chebyshev
Methode genauere Ergebnisse liefert, insbesondere bei der Beschreibung der Grenzschicht am inneren und
duBeren Zylinder. Experimentelle Untersuchungen, bei denen das Temperaturfeld mit Hilfe der Methode
nach Christiansen sichtbar gemacht wurde, zeigen bizellulare zweidimensionale Strukturen. Diese
Strukturen wurden bisher noch nie in konzentrischen Ringrdumen mit Hilfe des Christiansen-Effekts
beobachtet, sie stimmen gut mit den numerischen Ergebnissen iiberein.

YUCJEHHOE U 3KCNMEPUMEHTAJIBHOE UCCIEJOBAHHUE MHOIOSTYHEHUCTbLIX
CBOBOJHOKOHBEKTUBHLIX TEUEHHUI B KOJILIIEBOM CJIOE INOPUCTOT'C
MATEPHAJIA

AmnoTau#—UNC/ICHHO M OJKCHEPUMEHTAJIbHO HCCHERYOTCH CBOOONHOKOHBEKTHBHBIC [BYMEPHBIC
TEeUEeHHS B TOPU3OHTAIBHOM KOJIBLUEBOM CJIO¢ HACBILICHHOTO MOPACTOrC MaTepuaa. Tedenue KUAKOCTH,
ONHCEIBaEMOE [BYMEPHBIMHE ypaBHeHMsMH [lapcn-Byccumecka, onpenensercs IByMs pa3id4HbIMH
NpUGIIAKEHHBIMA METOIAMH, 2 UMEeHHO, MeTonoM Pypre-Tanepkana n UeOplilIeBCKMM METOXOM KOJI-
JoKayii U TpHGIMKEHME BBLICOKOrO MOpAAKa. CpaBHMBACTCH CHEKTpaibHAs TOYHOCTH 06OMX
MeTonoB. UnCeHHble Pe3ynbTaThl CBHIETEILCTBYIOT O TOM, YTO METON KOJUIOKauMil sBiserca Gonee
TOYHBIM, OCOGEHHO NPH OMMCAHMH TIOrPAHHYHBIX CIOCB, GOPMHUPYIOMIKXCS Y BHYTPEHHErO ¥ BHEIUHETO
HANHHAPOB. JKCNIEPEMERTAILHOE HCCIIE0BaHkE C UCIoNIb3opanneM apdexta Kpuctuancena s Bucya-
JIM3aLAM TENUTOBLIX NOJIEH MOKA3LIBAET HAMYME ABYXSYEHCTHIX ABYMEPHBIX CTPYKTYP. DTH CTPYKTYDHI,
HUKOT/Ia paHee He HabIIoNaABIIHECS B CITy4ae KOHICHTPHMECKUX IHIIMHAPOB nocpenTeoM sddexra Kpuc-
THAHCEHA, XOPOLIO COrIACYIOTCA C YUCIICHHBIME PE3yIbTaTaAMM.



